Possible derivation: d/dx(d/dx((x^3-3 x y^2)/(x^2+y^2)^3)) Use the product rule, d/dx(u v) = v ( du)/( dx)+u ( dv)/( dx), where u = 1/(x^2+y^2)^3 and v = x^3-3 x y^2: = d/dx((x^3-3 x y^2) d/dx(1/(x^2+y^2)^3)+(d/dx(x^3-3 x y^2))/(x^2+y^2)^3) Using the chain rule, d/dx(1/(x^2+y^2)^3) = d/( du)1/u^3 ( du)/( dx), where u = x^2+y^2 and ( d)/( du)(1/u^3) = -3/u^4: = d/dx((x^3-3 x y^2) (-3 d/dx(x^2+y^2))/(x^2+y^2)^4+(d/dx(x^3-3 x y^2))/(x^2+y^2)^3) Differentiate the sum term by term: = d/dx(((x^3-3 x y^2) -3 d/dx(x^2)+d/dx(y^2))/(x^2+y^2)^4+(d/dx(x^3-3 x y^2))/(x^2+y^2)^3) Use the power rule, d/dx(x^n) = n x^(n-1), where n = 2: d/dx(x^2) = 2 x: = d/dx(((x^3-3 x y^2) (-3 (2 x+d/dx(y^2))))/(x^2+y^2)^4+(d/dx(x^3-3 x y^2))/(x^2+y^2)^3) The derivative of y^2 is zero: = d/dx(((x^3-3 x y^2) (-3 (2 x+0)))/(x^2+y^2)^4+(d/dx(x^3-3 x y^2))/(x^2+y^2)^3) Differentiate the sum term by term and factor out constants: = d/dx(((x^3-3 x y^2) (-3 (2 x+0)))/(x^2+y^2)^4+d/dx(x^3)-3 y^2 d/dx(x)/(x^2+y^2)^3) The derivative of x is 1: = d/dx(((x^3-3 x y^2) (-3 (2 x+0)))/(x^2+y^2)^4+(1 -3 y^2+d/dx(x^3))/(x^2+y^2)^3) Use the power rule, d/dx(x^n) = n x^(n-1), where n = 3: d/dx(x^3) = 3 x^2: = d/dx(((x^3-3 x y^2) (-3 (2 x+0)))/(x^2+y^2)^4+(-3 y^2+3 x^2)/(x^2+y^2)^3) Differentiate the sum term by term and factor out constants: = d/dx((3 x^2-3 y^2)/(x^2+y^2)^3)-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4)) Use the product rule, d/dx(u v) = v ( du)/( dx)+u ( dv)/( dx), where u = 3 x^2-3 y^2 and v = 1/(x^2+y^2)^3: = -6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4))+(d/dx(3 x^2-3 y^2))/(x^2+y^2)^3+(3 x^2-3 y^2) d/dx(1/(x^2+y^2)^3) Simplify the expression: = (d/dx(3 x^2-3 y^2))/(x^2+y^2)^3+(3 x^2-3 y^2) (d/dx(1/(x^2+y^2)^3))-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4)) Differentiate the sum term by term and factor out constants: = (3 x^2-3 y^2) (d/dx(1/(x^2+y^2)^3))-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4))+3 d/dx(x^2)+d/dx(-3 y^2)/(x^2+y^2)^3 Use the power rule, d/dx(x^n) = n x^(n-1), where n = 2: d/dx(x^2) = 2 x: = (3 x^2-3 y^2) (d/dx(1/(x^2+y^2)^3))-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4))+(d/dx(-3 y^2)+3 2 x)/(x^2+y^2)^3 Simplify the expression: = (6 x+d/dx(-3 y^2))/(x^2+y^2)^3+(3 x^2-3 y^2) (d/dx(1/(x^2+y^2)^3))-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4)) The derivative of -3 y^2 is zero: = (3 x^2-3 y^2) (d/dx(1/(x^2+y^2)^3))-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4))+(6 x+0)/(x^2+y^2)^3 Simplify the expression: = (6 x)/(x^2+y^2)^3+(3 x^2-3 y^2) (d/dx(1/(x^2+y^2)^3))-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4)) Using the chain rule, d/dx(1/(x^2+y^2)^3) = d/( du)1/u^3 ( du)/( dx), where u = x^2+y^2 and ( d)/( du)(1/u^3) = -3/u^4: = (6 x)/(x^2+y^2)^3-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4))+(3 x^2-3 y^2) (-3 d/dx(x^2+y^2))/(x^2+y^2)^4 Differentiate the sum term by term: = (6 x)/(x^2+y^2)^3-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4))-(d/dx(x^2)+d/dx(y^2) 3 (3 x^2-3 y^2))/(x^2+y^2)^4 Use the power rule, d/dx(x^n) = n x^(n-1), where n = 2: d/dx(x^2) = 2 x: = (6 x)/(x^2+y^2)^3-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4))-(3 (3 x^2-3 y^2) (d/dx(y^2)+2 x))/(x^2+y^2)^4 The derivative of y^2 is zero: = (6 x)/(x^2+y^2)^3-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4))-(3 (3 x^2-3 y^2) (2 x+0))/(x^2+y^2)^4 Simplify the expression: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 (d/dx((x (x^3-3 x y^2))/(x^2+y^2)^4)) Use the product rule, d/dx(u v) = v ( du)/( dx)+u ( dv)/( dx), where u = x and v = (x^3-3 x y^2)/(x^2+y^2)^4: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2) d/dx(x))/(x^2+y^2)^4+x d/dx((x^3-3 x y^2)/(x^2+y^2)^4) The derivative of x is 1: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 (x (d/dx((x^3-3 x y^2)/(x^2+y^2)^4))+(1 (x^3-3 x y^2))/(x^2+y^2)^4) Use the product rule, d/dx(u v) = v ( du)/( dx)+u ( dv)/( dx), where u = 1/(x^2+y^2)^4 and v = x^3-3 x y^2: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+(x^3-3 x y^2) d/dx(1/(x^2+y^2)^4)+(d/dx(x^3-3 x y^2))/(x^2+y^2)^4 x) Using the chain rule, d/dx(1/(x^2+y^2)^4) = d/( du)1/u^4 ( du)/( dx), where u = x^2+y^2 and ( d)/( du)(1/u^4) = -4/u^5: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+x ((d/dx(x^3-3 x y^2))/(x^2+y^2)^4+(x^3-3 x y^2) (-4 d/dx(x^2+y^2))/(x^2+y^2)^5)) Differentiate the sum term by term: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+x ((d/dx(x^3-3 x y^2))/(x^2+y^2)^4-(d/dx(x^2)+d/dx(y^2) 4 (x^3-3 x y^2))/(x^2+y^2)^5)) Use the power rule, d/dx(x^n) = n x^(n-1), where n = 2: d/dx(x^2) = 2 x: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+x ((d/dx(x^3-3 x y^2))/(x^2+y^2)^4-(4 (x^3-3 x y^2) (d/dx(y^2)+2 x))/(x^2+y^2)^5)) The derivative of y^2 is zero: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+x ((d/dx(x^3-3 x y^2))/(x^2+y^2)^4-(4 (x^3-3 x y^2) (2 x+0))/(x^2+y^2)^5)) Simplify the expression: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+x (-(8 x (x^3-3 x y^2))/(x^2+y^2)^5+(d/dx(x^3-3 x y^2))/(x^2+y^2)^4)) Differentiate the sum term by term and factor out constants: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+x (-(8 x (x^3-3 x y^2))/(x^2+y^2)^5+d/dx(x^3)-3 y^2 d/dx(x)/(x^2+y^2)^4)) The derivative of x is 1: = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+x (-(8 x (x^3-3 x y^2))/(x^2+y^2)^5+(d/dx(x^3)-1 3 y^2)/(x^2+y^2)^4)) Use the power rule, d/dx(x^n) = n x^(n-1), where n = 3: d/dx(x^3) = 3 x^2: Answer: | | = -(6 x (3 x^2-3 y^2))/(x^2+y^2)^4+(6 x)/(x^2+y^2)^3-6 ((x^3-3 x y^2)/(x^2+y^2)^4+x (-(8 x (x^3-3 x y^2))/(x^2+y^2)^5+(-3 y^2+3 x^2)/(x^2+y^2)^4))